Armstrong Credit: www.spacefacts.de |
Status: Deceased; Active 1962-1970. Born: 1930-08-05. Died: 2012-08-25. Spaceflights: 2 . Total time in space: 8.58 days. Birth Place: Wapakoneta, Ohio.
Flew 78 combat missions with US Navy in Korea.
Official NASA Biography as of June 2016:Neil A. Armstrong
NASA Astronaut (deceased)
PERSONAL DATA: Born on August 5, 1930, in Wapakoneta, Ohio. Married. Two sons. Died on August 25, 2012.
EDUCATION: Armstrong received a Bachelor of Science in Aeronautical Engineering from Purdue University and a Master of Science in Aerospace Engineering from the University of Southern California. He held honorary doctorates from multiple universities.
SPECIAL HONORS: Armstrong was a Fellow of the Society of Experimental Test Pilots and the Royal Aeronautical Society and an Honorary Fellow of the American Institute of Aeronautics and Astronautics and the International Astronautics Federation.
Armstrong was a member of the National Academy of Engineering and the Academy of the Kingdom of Morocco. He served as a member of the National Commission on Space (1985 to 1986), as Vice-Chairman of the Presidential Commission on the Space Shuttle Challenger Accident (1986) and as Chairman of the Presidential Advisory Committee for the Peace Corps (1971 to 1973).
Armstrong was decorated by 17 countries. He was the recipient of many special honors, including the Presidential Medal of Freedom, the Congressional Gold Medal, the Congressional Space Medal of Honor, the Explorers Club Medal, the Robert H. Goddard Memorial Trophy, the NASA Distinguished Service Medal, the Harmon International Aviation Trophy, the Royal Geographic Society's Gold Medal, the Federation Aeronautique Internationale's Gold Space Medal, the American Astronautical Society Flight Achievement Award, the Robert J. Collier Trophy, the American Institute of Aeronautics and Astronautics (AIAA) Astronautics Award, the Octave Chanute Award and the John J. Montgomery Award.
EXPERIENCE: After serving as a naval aviator from 1949 to 1952, Armstrong joined the National Advisory Committee for Aeronautics (NACA) in 1955. His first assignment was with the NACA Lewis Research Center (now NASA Glenn Research Center) in Cleveland. Over the next 17 years, he was an engineer, test pilot, astronaut and administrator for NACA and its successor agency, NASA.
He was Professor of Aerospace Engineering at the University of Cincinnati between 1971 and 1979. During the years 1982 to 1992, Armstrong was chairman of Computing Technologies for Aviation, Inc., Charlottesville, Virginia.
NASA EXPERIENCE: As a research pilot at NASA's Flight Research Center, Edwards, California, Armstrong was a project pilot on many pioneering high speed aircraft, including the well known, 4000-mph X-15. He flew more than 200 different models of aircraft, including jets, rockets, helicopters and gliders.
Armstrong transferred to astronaut status in 1962. He was assigned as command pilot for the Gemini 8 mission. Gemini 8 was launched on March 16, 1966, and Armstrong performed the first successful docking of two vehicles in space.
As spacecraft commander for Apollo 11, the first manned lunar landing mission, Armstrong gained the distinction of being the first man to land a craft on the moon and first to step on its surface.
Armstrong subsequently held the position of Deputy Associate Administrator for Aeronautics, NASA Headquarters, Washington, D.C. In this position, he was responsible for the coordination and management of overall NASA research and technology work related to aeronautics.
He resigned from NASA in 1971.
AUGUST 2012
Official NASA Biography - 1997
Neil A. Armstrong joined the National Advisory Committee for Aeronautics (NACA) at the Lewis Flight Propulsion Laboratory (later NASA's Lewis Research Center, Cleveland, Ohio, and today the Glenn Research Center) in 1955. Later that year, he transferred to the NACA's High-Speed Flight Station (today, NASA's Dryden Flight Research Center) at Edwards Air Force Base in California as an aeronautical research scientist and then as a pilot, a position he held until becoming an astronaut in 1962. He was one of nine NASA astronauts in the second class to be chosen.
As a research pilot Armstrong served as project pilot on the F-100A and F-100C aircraft, F-101, and the F-104A. He also flew the X-1B, X-5, F-105, F-106, B-47, KC-135, and Paresev. He left Dryden with a total of over 2450 flying hours. He was a member of the USAF-NASA Dyna-Soar Pilot Consultant Group before the Dyna-Soar project was cancelled, and studied X-20 Dyna-Soar approaches and abort maneuvers through use of the F-102A and F5D jet aircraft.
Armstrong was actively engaged in both piloting and engineering aspects of the X-15 program from its inception. He completed the first flight in the aircraft equipped with a new flow-direction sensor (ball nose) and the initial flight in an X-15 equipped with a self-adaptive flight control system. He worked closely with designers and engineers at what became Dryden in development of the adaptive system, and made seven flights in the rocket plane from December 1960 until July 1962. During those fights he reached a peak altitude of 207,500 feet in the X-15-3, and a speed of 3,989 mph (Mach 5.74) in the X-15-1.
Armstrong was born August 5, 1930, in Wapakoneta, Ohio. He attended Purdue University, earning his Bachelor of Science degree in aeronautical engineering in 1955. During the Korean War, which interrupted his engineering studies, he flew 78 combat missions in F9F-2 jet fighters. He was awarded the Air Medal and two Gold Stars. He later earned a Master of Science degree in aerospace engineering from the University of Southern California.
He was selected as an astronaut by NASA in 1962. On March 16, 1966 Armstrong and Dave Scott aboard Gemini 8 conducted the first docking in space. But shortly after the Gemini and the Agena docked, the craft began spinning out of control. Armstrong disengaged from the Agena, thinking the problem was there, but the tumbling worsened. It was later determined that it was one of 16 Gemini thrusters was stuck. Unable to stop the spin with the main thrusters, Armstrong shut down the Gemini's reaction control system and brought the craft under control using a second set of 16 thrusters intended only for use on re-entry. Mission Control ordered Armstrong and Scott to cut the flight short and they splashed down in a contingency recovery area in the western Pacific. Armstrong's successful recovery of the spacecraft in a situation that, if misjudged, could easily have resulted in the death of the crew, resulted in his being made commander of the mission that resulted in the first manned lunar landing.
On July 20, 1969, Armstrong stepped off the ladder of the Apollo 11 Lunar Module and became the first human being to set foot on the moon. He was later joined by Buzz Aldrin for two hours of ceremonies and moon rock collecting. The next day the astronauts' Lunar Module lifted off from the lunar surface and docked with the Apollo 11 command module, piloted by Mike Collins, in lunar orbit. Armstrong and Aldrin transferred their moon rocks to the command module. The Lunar Module ascent stage was cast off and the crew rocketed to a safe recovery in the Pacific Ocean.
Armstrong had a total of 8 days and 14 hours in space, including 2 hours and 48 minutes walking on the Moon. After the moon landing and the subsequent world tours by the crew, from 1969 to 1971, he was Deputy Associate Administrator for Aeronautics at NASA Headquarters. He resigned from NASA in August 1971 to become Professor of Engineering at the University of Cincinnati, a post he held until 1979. He became Chairman of the Board of Cardwell International, Ltd., in Lebanon, Ohio, in 1980 and served in that capacity until 1982. During the years 1982-1992, Armstrong was chairman of Computing Technologies for Aviation, Inc., in Charlottesville, Virginia. From 1981 to 1999, he served on the board of directors for Eaton Corp. He was still serving as chairman of the board of AIL Systems, Inc. of Deer Park, New York, as of 1999. From 1985 to 1986 he served on the National Commission on Space, a presidential committee to develop goals for a national space program into the 21st century. He was also Vice Chairman of the committee investigating the Space Shuttle Challenger disaster in 1986. During the early 1990s he hosted an aviation documentary series for television entitled First Flights.
Armstrong has been the recipient of numerous awards, including the Presidential Medal for Freedom and the Robert J. Collier Trophy in 1969; the Robert H. Goddard Memorial Trophy in 1970; the Congressional Space Medal of Honor in 1978; and many medals from other countries.
Gemini 8 Astronauts Scott and Armstrong inserted into Gemini 8 spacecraft Credit: NASA |
Gemini 8 Astronaut Neil A. Armstrong in Gemini 8 spacecraft during countdown Credit: NASA |
Apollo 11 View of Astronaut Neil Armstrong in Lunar Module Credit: NASA |
In a US Air Force briefing a preliminary astronaut selection for the Man-In-Space Soonest project is made. The list consisted of USAF test pilots Robert Walker, Scott Crossfield, Neil Armstrong, Robert Rushworth, William Bridgeman, Alvin White, Iven Kincheloe, Robert White, and Jack McKay. This was the first preliminary astronaut selection in history. The project was cancelled when NASA was formed in and took responsibility for all manned space flight on 1 August 1958. Prospective contractors estimated it would take from 12 to 30 months to put the first American in orbit. In retrospect the orbital flight portion of NASA's Mercury program was paced by the availability of the Atlas booster. Therefore it is unlikely Man-in-Space-Soonest would have put an American in orbit any earlier than Mercury.
A centrifuge program was conducted at Johnsville, Pennsylvania, to investigate the role of a pilot in the launch of a multi-stage vehicle. Test subjects were required to perform boost-control tasks, while being subjected to the proper boost-control accelerations. The highest g-force experienced was 15, and none of the test subjects felt they reached the limit of their control capability. As a note of interest, one of the test subjects, Neil Armstrong, was later selected for the Gemini program in September 1962.
NASA planned to select five to ten astronauts to augment the seven-member Mercury astronaut team. The new pilots would participate in support operations in Project Mercury and would join the Mercury astronauts in piloting the two-man Gemini spacecraft. To be chosen, the applicant must (1) be an experienced jet test pilot and preferably be presently engaged in flying high-performance aircraft; (2) have attained experimental flight test status through military service, aircraft industry, or NASA, or must have graduated from a military test pilot school; (3) have earned a degree in the physical or biological sciences or in engineering; (4) be a United States citizen under 35 years of age at the time of selection, six feet or less in height; and (5) be recommended by his parent organization. Pilots meeting these qualifications would be interviewed in July and given written examinations on their engineering and scientific knowledge. Selected applicants would then be thoroughly examined by a group of medical specialists. The training program for the new astronauts would include work with design and development engineers, simulator flying, centrifuge training, additional scientific training, and flights in high-performance aircraft.
NASA's nine new astronauts were named in Houston, Tex., by Robert R. Gilruth, MSC Director. Chosen from 253 applicants, the former test pilots who would join the original seven Mercury astronauts in training for Projects Gemini and Apollo were: Neil A. Armstrong, NASA civilian test pilot; Maj. Frank Borman, Air Force; Lt. Charles Conrad, Jr., Navy; Lt.Cdr. James A, Lovell, Jr., Navy; Capt. James A. McDivitt, Air Force; Elliot M. See, Jr., civilian test pilot for the General Electric Company; Capt. Thomas P. Stafford, Air Force; Capt. Edward H. White II, Air Force; and Lt. Cdr. John W. Young, Navy.
Manned Spacecraft Center announced specialty areas for the nine new astronauts: trainers and simulators, Neil A. Armstrong; boosters, Frank Borman; cockpit layout and systems integration, Charles Conrad, Jr.; recovery systems, James A. Lovell, Jr.; guidance and navigation, James A. McDivitt; electrical, Sequential, and mission planning, Elliot M. See, Jr.; communications, instrumentation, and range integration, Thomas P. Stafford; flight control systems, Edward H White II; and environmental control systems, personal and survival equipment, John W Young.
MSC announced new assignments for the seven original astronauts: L. Gordon Cooper, Jr., and Alan B. Shepard, Jr., would be responsible for the remaining pilot phases of Project Mercury; Virgil I. Grissom would specialize in Project Gemini; John H. Glenn, Jr., would concentrate on Project Apollo; M. Scott Carpenter would cover lunar excursion training; and Walter M. Schirra, Jr., would be responsible for Gemini and Apollo operations and training. As Coordinator for Astronaut Activities, Donald K. Slayton would maintain overall supervision of astronaut duties.
Specialty areas for the second generation were: trainers and simulators, Neil A. Armstrong; boosters, Frank Borman; cockpit layout and systems integration, Charles Conrad, Jr.; recovery system, James A. Lovell, Jr.; guidance and navigation, James A. McDivitt; electrical, sequential, and mission planning, Elliot M. See, Jr.; communications, instrumentation, and range integration, Thomas P. Stafford; flight control systems, Edward H. White II; and environmental control systems, personal equipment, and survival equipment, John W. Young.
Astronauts M. Scott Carpenter, Walter M. Schirra, Jr., Neil A. Armstrong, James A. McDivitt, Elliot M. See, Jr., Edward H. White II, Charles Conrad, Jr., and John W. Young participated in a study in LTV's Manned Space Flight Simulator at Dallas, Tex. Under an MSC contract, LTV was studying the astronauts' ability to control the LEM manually and to rendezvous with the CM if the primary guidance system failed during descent.
Major objectives of the eight-day mission were evaluating the performance of the rendezvous guidance and navigation system, using a rendezvous evaluation pod (REP), and evaluating the effects of prolonged exposure to the space environment on the flight crew. Secondary objectives included demonstrating controlled reentry guidance, evaluating fuel cell performance, demonstrating all phases of guidance and control system operation needed for a rendezvous mission, evaluating the capability of either pilot to maneuver the spacecraft in orbit to rendezvous, evaluating the performance of rendezvous radar, and executing 17 experiments. The mission proceeded without incident through the first two orbits and the ejection of the REP. About 36 minutes after beginning evaluation of the rendezvous guidance and navigation system, the crew noted that the pressure in the oxygen supply tank of the fuel cell system was falling. Pressure dropped from 850 pounds per square inch absolute (psia) at 26 minutes into the flight until it stabilized at 70 psia at 4 hours 22 minutes, and gradually increased through the remainder of the mission. The spacecraft was powered down and the REP exercise was abandoned. By the seventh revolution, experts on the ground had analyzed the problem and a powering-up procedure was started. During the remainder of the mission the flight plan was continuously scheduled in real time. Four rendezvous radar tests were conducted during the mission, the first in revolution 14 on the second day; the spacecraft rendezvous radar successfully tracked a transponder on the ground at Cape Kennedy. During the third day, a simulated Agena rendezvous was conducted at full electrical load. The simulation comprised four maneuvers - apogee adjust, phase adjust, plane change, and coelliptical maneuver - using the orbit attitude and maneuver system (OAMS). Main activities through the fourth day of the mission concerned operations and experiments. During the fifth day, OAMS operation became sluggish and thruster No. 7 inoperative. Thruster No. 8 went out the next day, and the rest of the system was gradually becoming more erratic. Limited experimental and operational activities continued through the remainder of the mission. Retrofire was initiated in the 121st revolution during the eighth day of the mission, one revolution early because of threatening weather in the planned recovery area. Reentry and landing were satisfactory, but the landing point was 145 km short, the result of incorrect navigation coordinates transmitted to the spacecraft computer from the ground network. Landing occurred August 29, 190 hours 55 minutes after the mission had begun. The astronauts arrived on board the prime recovery ship, the aircraft carrier Lake Champlain, at 9:25. The spacecraft was recovered at 11:51 a.m.
With this flight, the US finally took the manned spaceflight endurance record from Russia, while demonstrating that the crew could survive in zero gravity for the length of time required for a lunar mission. However the mission was incredibly boring, the spacecraft just drifting to conserve fuel most of the time, and was 'just about the hardest thing I've ever done' according to a hyperactive Pete Conrad. An accident with freeze dried shrimp resulted in the cabin being filled with little pink subsatellites.
Manned Spacecraft Center announced that Neil A. Armstrong would be command pilot and David R. Scott would be pilot for Gemini VIII. Backup crew would be Charles Conrad, Jr., and Richard F. Gordon, Jr. Gemini VIII would include practice on rendezvous and docking maneuvers and a space walk that could last as long as one Earth orbit, about 95 minutes.
The Atlas-Agena target vehicle for the Gemini VIII mission was successfully launched from KSC Launch Complex 14 at 10 a.m. EST March 16. The Gemini VIII spacecraft followed from Launch Complex 19 at 11:41 a.m., with command pilot Neil A. Armstrong and pilot David R. Scott aboard. The spacecraft and its target vehicle rendezvoused and docked, with docking confirmed 6 hours 33 minutes after the spacecraft was launched. This first successful docking with an Agena target vehicle was followed by a major space emergency. About 27 minutes later the spacecraft-Agena combination encountered unexpected roll and yaw motion. A stuck thruster on Gemini put the docked assembly into a wild high speed gyration. Near structural limits and blackout, Armstrong undocked, figuring the problem was in the Agena, which only made it worse. The problem arose again and when the yaw and roll rates became too high the crew shut the main Gemini reaction control system down and activated and used both rings of the reentry control system to reduce the spacecraft rates to zero. This used 75% of that system's fuel. Although the crew wanted to press on with the mission and Scott's planned space walk, ground control ordered an emergency splashdown in the western Pacific during the seventh revolution. The spacecraft landed at 10:23 p.m. EST March 16 and Armstrong and Scott were picked up by the destroyer U.S.S. Mason at 1:37 a.m. EST March 17. Although the flight was cut short by the incident, one of the primary objectives - rendezvous and docking (the first rendezvous of two spacecraft in orbital flight) - was accomplished.
Primary objectives of the scheduled three-day mission were to rendezvous and dock with the Gemini Agena target vehicle (GATV) and to conduct extravehicular activities. Secondary objectives included rendezvous and docking during the fourth revolution, performing docked maneuvers using the GATV primary propulsion system, executing 10 experiments, conducting docking practice, performing a rerendezvous, evaluating the auxiliary tape memory unit, demonstrating controlled reentry, and parking the GATV in a 220-nautical mile circular orbit. The GATV was inserted into a nominal 161-nautical mile circular orbit, the spacecraft into a nominal 86 by 147-nautical mile elliptical orbit. During the six hours following insertion, the spacecraft completed nine maneuvers to rendezvous with the GATV. Rendezvous phase ended at 5 hours 58 minutes ground elapsed time, with the spacecraft 150 feet from the GATV and no relative motion between the two vehicles. Stationkeeping maneuvers preceded docking, which was accomplished at 6 hours 33 minutes ground elapsed time. A major problem developed 27 minutes after docking, when a spacecraft orbit attitude and maneuver system (OAMS) thruster malfunctioned. The crew undocked from the GATV and managed to bring the spacecraft under control by deactivating the OAMS and using the reentry control system (RCS) to reduce the spacecraft's rapid rotation. Premature use of the RCS, however, required the mission to be terminated early. The retrofire sequence was initiated in the seventh revolution, followed by nominal reentry and landing in a secondary recovery area in the western Pacific Ocean. The spacecraft touched down less than 10 km from the planned landing point. The recovery ship, the destroyer Leonard Mason, picked up both crew and spacecraft some three hours later. Early termination of the mission precluded achieving all mission objectives, but one primary objective - rendezvous and docking - was accomplished. Several secondary objectives were also achieved: rendezvous and docking during the fourth revolution, evaluating the auxiliary tape memory unit, demonstrating controlled reentry, and parking the GATV. Two experiments were partially performed.
More highjinks with Conrad. First orbit docking with Agena, followed by boost up to record 800 km orbit, providing first manned views of earth as sphere. Tether attached by Gordon to Agena in spacewalk and after a lot of effort tethered spacecraft put into slow rotation, creating first artificial microgravity.
The primary objective of the Gemini XI mission was to rendezvous with the Gemini Agena target vehicle (GATV) during the first revolution and dock. Five maneuvers completed the spacecraft/GATV rendezvous at 1 hour 25 minutes ground elapsed time, and the two vehicles docked nine minutes later. Secondary objectives included docking practice, extravehicular activity (EVA), 11 experiments, docked maneuvers, a tethered vehicle test, demonstrating automatic reentry, and parking the GATV. All objectives were achieved except one experiment - evaluation of the minimum reaction power tool - which was not performed because umbilical EVA was terminated prematurely. Umbilical EVA began at 24 hours 2 minutes ground elapsed time and ended 33 minutes later. Gordon became fatigued while attaching the tether from the GATV to the spacecraft docking bar. An hour later the hatch was opened to jettison equipment no longer required. At 40 hours 30 minutes after liftoff, the GATV primary propulsion system (PPS) was fired to raise the apogee of the docked vehicles to 741 nautical miles for two revolutions. The PPS was fired again, 3 hours 23 minutes later, to reduce apogee to 164 nautical miles. The crew then prepared for standup EVA, which began at 47 hours 7 minutes into the flight and lasted 2 hours 8 minutes. The spacecraft was then undocked to begin the tether evaluation. At 50 hours 13 minutes ground elapsed time, the crew initiated rotation. Initial oscillations damped out and the combination became very stable after about 20 minutes; the rotational rate was then increased. Again, initial oscillations gradually damped out and the combination stabilized. At about 53 hours into the mission, the crew released the tether, separated from the GATV, and maneuvered the spacecraft to an identical orbit with the target vehicle. A fuel cell stack failed at 54 hours 31 minutes, but the remaining five stacks shared the load and operated satisfactorily. A rerendezvous was accomplished at 66 hours 40 minutes ground elapsed time, and the crew then prepared for reentry.
Lunar landing research vehicle (LLRV) No. 1 crashed at Ellington Air Force Base, Tex. The pilot, astronaut Neil A. Armstrong, ejected after losing control of the vehicle, landing by parachute with minor injury. Estimated altitude of the LLRV at the time of ejection was 60 meters. LLRV No. 1, which had been on a standard training mission, was a total loss - estimated at $1.5 million. LLRV No. 2 would not begin flight status until the accident investigation had been completed and the cause determined. Additional Details: here....
Apollo 8 (AS-503) was launched from KSC Launch Complex 39, Pad A, at 7:51 a.m. EST Dec. 21 on a Saturn V booster. The spacecraft crew was made up of Frank Borman, James A. Lovell, Jr., and William A. Anders. Apollo 8 was the first spacecraft to be launched by a Saturn V with a crew on board, and that crew became the first men to fly around the moon.
All launch and boost phases were normal and the spacecraft with the S-IVB stage was inserted into an earth-parking orbit of 190.6 by 183.2 kilometers above the earth. After post-insertion checkout of spacecraft systems, the S-IVB stage was reignited and burned 5 minutes 9 seconds to place the spacecraft and stage in a trajectory toward the moon - and the Apollo 8 crew became the first men to leave the earth's gravitational field.
The spacecraft separated from the S-IVB 3 hours 20 minutes after launch and made two separation maneuvers using the SM's reaction control system. Eleven hours after liftoff, the first midcourse correction increased velocity by 26.4 kilometers per hour. The coast phase was devoted to navigation sightings, two television transmissions, and system checks. The second midcourse correction, about 61 hours into the flight, changed velocity by 1.5 kilometers per hour.
The 4-minute 15-second lunar-orbit-insertion maneuver was made 69 hours after launch, placing the spacecraft in an initial lunar orbit of 310.6 by 111.2 kilometers from the moon's surface - later circularized to 112.4 by 110.6 kilometers. During the lunar coast phase the crew made numerous landing-site and landmark sightings, took lunar photos, and prepared for the later maneuver to enter the trajectory back to the earth.
On the fourth day, Christmas Eve, communications were interrupted as Apollo 8 passed behind the moon, and the astronauts became the first men to see the moon's far side. Later that day , during the evening hours in the United States, the crew read the first 10 verses of Genesis on television to earth and wished viewers "goodnight, good luck, a Merry Christmas and God bless all of you - all of you on the good earth."
Subsequently, TV Guide for May 10-16, 1969, claimed that one out of every four persons on earth - nearly 1 billion people in 64 countries - heard the astronauts' reading and greeting, either on radio or on TV; and delayed broadcasts that same day reached 30 additional countries.
On Christmas Day, while the spacecraft was completing its 10th revolution of the moon, the service propulsion system engine was fired for three minutes 24 seconds, increasing the velocity by 3,875 km per hr and propelling Apollo 8 back toward the earth, after 20 hours 11 minutes in lunar orbit. More television was sent to earth on the way back.
How the decision was reached on who would be the first man to step out onto the moon was reported in a letter by ASPO Manager George M. Low: "Some time during the middle of the night, I had a call from Associated Press informing me that they had a story that Neil Armstrong had pulled rank on Buzz Aldrin to be the first man on the surface of the moon. They wanted to know whether it was true and how the decision was reached concerning who would get out of the LM first.
"To the best of my recollection, I gave the following information:
"a. There had been many informal plans developed during the past several years concerning the lunar timeline. These probably included all combinations of one man out versus two men out, who gets out first, etc.
"b. There was only one approved plan and that was established 2 to 4 weeks prior to our public announcement of this planning. I believe that this was in April 1969.
"c. The basic decision was made by my Configuration Control Board. It was based on a recommendation by the Flight Crew Operations Directorate. I am sure that Armstrong had made an input to this recommendation, but he, by no means, had the final say. The CCB decision was final."
First landing on moon. Apollo 11 (AS-506) - with astronauts Neil A. Armstrong, Michael Collins, and Edwin E. Aldrin, Jr., aboard - was launched from Pad A, Launch Complex 39, KSC, at 9:32 a.m. EDT July 16. The activities during earth-orbit checkout, translunar injection, CSM transposition and docking, spacecraft ejection, and translunar coast were similar to those of Apollo 10.
At 4:40 p.m. EDT July 18, the crew began a 96-minute color television transmission of the CSM and LM interiors, CSM exterior, the earth, probe and drogue removal, spacecraft tunnel hatch opening, food preparation, and LM housekeeping. One scheduled and two unscheduled television broadcasts had been made previously by the Apollo 11 crew.
The spacecraft entered lunar orbit at 1:28 p.m. EDT on July 19. During the second lunar orbit a live color telecast of the lunar surface was made. A second service-propulsion-system burn placed the spacecraft in a circularized orbit, after which astronaut Aldrin entered the LM for two hours of housekeeping including a voice and telemetry test and an oxygen-purge-system check.
At 8:50 a.m. July 20, Armstrong and Aldrin reentered the LM and checked out all systems. They performed a maneuver at 1:11 p.m. to separate the LM from the CSM and began the descent to the moon. The LM touched down on the moon at 4:18 p.m. EDT July 20. Armstrong reported to mission control at MSC, "Houston, Tranquillity Base here - the Eagle has landed." (Eagle was the name given to the Apollo 11 LM; the CSM was named Columbia.) Man's first step on the moon was taken by Armstrong at 10:56 p.m. EDT. As he stepped onto the surface of the moon, Armstrong described the feat as "one small step for man - one giant leap for mankind."
Aldrin joined Armstrong on the surface of the moon at 11:15 p.m. July 20. The astronauts unveiled a plaque mounted on a strut of the LM and read to a worldwide TV audience, "Here men from the planet earth first set foot on the moon July 1969, A.D. We came in peace for all mankind." After raising the American flag and talking to President Nixon by radiotelephone, the two astronauts deployed the lunar surface experiments assigned to the mission and gathered 22 kilograms of samples of lunar soil and rocks. They then reentered the LM and closed the hatch at 1:11 a.m. July 21. All lunar extravehicular activities were televised in black-and-white. Meanwhile, Collins continued orbiting moon alone in CSM Columbia.
The Eagle lifted off from the moon at 1:54 p.m. EDT July 21, having spent 21 hours 36 minutes on the lunar surface. It docked with the CSM at 5:35 p.m. and the crew, with the lunar samples and film, transferred to the CSM. The LM ascent stage was jettisoned into lunar orbit. The crew then rested and prepared for the return trip to the earth.
The CSM was injected into a trajectory toward the earth at 12:55 a.m. EDT July 22. Following a midcourse correction at 4:01 p.m., an 18-minute color television transmission was made, in which the astronauts demonstrated the weightlessness of food and water and showed shots of the earth and the moon.
At 16:50 GMT Apollo 11's command module Columbia splashed down in the mid-Pacific, about 24 kilometers from the recovery ship U.S.S. Hornet. Following decontamination procedures at the point of splashdown, the astronauts were carried by helicopter to the Hornet where they entered a mobile quarantine facility to begin a period of observation under strict quarantine conditions. The CM was recovered and removed to the quarantine facility. Sample containers and film were flown to Houston.
All primary mission objectives and all detailed test objectives of Apollo 11 were met, and all crew members remained in good health.
George Low, James McDivitt, Neil Armstrong, and Edwin Aldrin discussed lunar exploration that could be carried out by astronauts walking in spacesuits or riding roving vehicles. The following conclusions were reached: "a. A possible mode of exploration would be to walk 1 hour (3 to 5 miles (5 to 8 kilometers)) to an exploration site; spend 1 to 2 hours at that site; and then return to the LM. b. It would be easy to carry anything that need be carried, provided that it did not require the hands for the purpose. c. A roving vehicle might work if it had extremely large wheels. There appeared to be no significant advantage of using the presently conceived roving vehicle instead of walking. d. All extravehicular excursions should be carried out by two men at a time. e. Excursions should not be carried out beyond the radius of ground communications."