Astron Russian x-ray astronomy satellite. Astrophysics satellite based on the Venera 4V-2 bus design. Electrophysical research of galactic and extragalactic sources of ultraviolet ray and X-ray emission. Astronomy, UV satellite, Russia. Launched 1983. Used Venera-Bus. |
Granat Russian x-ray astronomy satellite. Granat was a Lavochkin design with the mission of making gamma ray observations in energy ranges of 3 to 200 keV. Astronomy, X-Ray, Gamma satellite, Russia. Launched 1989. Used Venera-Bus. |
Mars M-69 Russian Mars orbiter. Mars probe intended to enter Martian orbit and comprehensively photograph Mars. |
Mars M-71 Russian Mars lander. Mars spacecraft built by Lavochkin for 1971 campaign. The spacecraft consists of a bus/orbiter module and an attached descent/lander module. Mars orbiter, landers satellite, Russia. Launched 1971. |
Mars M-73 Russian Mars lander. The M-73 spacecraft series was built for 1973 Mars missions. Mars lander, Russia. Launched 1973. |
Venera 4V-1 Russian Venus probe. Venus orbiter and lander, Russia. Launched 1975 - 1978. |
Venera 4V-2 Russian Venus probe. Venera radar mappers which used an 8 cm band side-looking radar to study the surface properties of Venus. Venus radar lander, Russia. Launched 1983. |
Mars probe intended to enter Martian orbit and comprehensively photograph Mars, together with a landing probe. Further Mars launches during the 1969 launch window were cancelled when this attempt resulted in a major accident, which almost wiped out all of the leaders of the space industry. The Proton rocket lifted off, but one engine failed. The vehicle flew at an altitude of 50 m horizontally, finally exploding only a short distance from the launch pad, spraying the whole complex with poisonous propellants that were quickly spread by the wind. Everyone took off in their autos to escape, but which direction to go? Finally it was decided that the launch point was the safest, but this proved to be even more dangerous - the second stage was still intact and liable to explode. The contamination was so bad that there was no way to clean up - the only possibility was just to wait for rain to wash it away. This didn't happen until the Mars launch window was closed, so the first such probe was not put into space until 1971. This accident also severely damaged plans to divert attention from America's Apollo programme during the rest of 1969. 10-12 UR-500K launches had been intended to land on the moon lunar soil return and rover robots to supplement the N1 launches.
Mars probe intended to enter Martian orbit and comprehensively photograph Mars. Rocket block failed to reignite in Earth Orbit. It is widely believed this spacecraft was launched with the primary purpose of overtaking Mariner 8, which had been launched (unsuccessfully, as it turned out) two days earlier, and becoming the first Mars orbiter. The Proton booster successfully put the spacecraft into low (174 km x 159 km) Earth parking orbit with an inclination of 51.4 degrees, but the Block D stage 4 failed to function due to a bad ignition timer setting (the timer, which was supposed to start ignition 1.5 hours after orbit was erroneously set for 1.5 years.) The orbit decayed and the spacecraft re-entered Earth's atmosphere 2 days later on 12 May 1971. The mission was designated Cosmos 419.
Mars probe intended to conduct of a series of scientific investigations of the planet Mars and the space around it. Parameters are for Mars orbit. Mid-course corrections were made on 17 June and 20 November. Mars 2 released the descent module (1971-045D) 4.5 hours before reaching Mars on 27 November 1971. The descent system malfunctioned and the lander crashed at 45 deg S, 302 deg W, delivering the Soviet Union coat of arms to the surface. Meanwhile, the orbiter engine performed a burn to put the spacecraft into a 1380 x 24,940 km, 18 hour orbit about Mars with an inclination of 48.9 degrees. Scientific instruments were generally turned on for about 30 minutes near periapsis. Data was sent back for many months. It was announced that Mars 2 and 3 had completed their missions by 22 August 1972. On-orbit dry mass: 2265 kg. Had the lander survived, data would have been relayed to the earth via the orbiter.
Mars probe intended to conduct of a series of scientific investigations of the planet Mars and the space around it. Parameters are for Mars orbit. The Mars 3 orbiter also carried a French-built experiment which was not carried on Mars 2. Called Spectrum 1, the instrument measured solar radiation at metric wavelengths in conjunction with Earth-based receivers to study the cause of solar outbursts. The Spectrum 1 antenna was mounted on one of the solar panels. A mid-course correction was made on 8 June. The descent module (COSPAR 1971-049F) was released at 09:14 GMT on 2 December 1971 about 4.5 hours before reaching Mars. Through aerodynamic braking, parachutes, and retro-rockets, the lander achieved a soft landing at 45 S, 158 W and began operations. However, after 20 sec the instruments stopped working for unknown reasons. Meanwhile, the orbiter engine performed a burn to put the spacecraft into a long 11-day period orbit about Mars with an inclination thought to be similar to that of Mars 2 (48.9 degrees). Data was sent back for many months. It was announced that Mars 2 and 3 had completed their missions by 22 August 1972.
Failed; did not enter Martian orbit as planned; intended to be a Mars orbiter mission. Mars 4 reached Mars on 10 February 1974. Due to use of helium in preflight tests of the computer chips, which resulted in degradation of the chips during the voyage to Mars, the retro-rockets never fired to slow the craft into Mars orbit. Mars 4 flew by the planet at a range of 2,200 km. It returned one swath of pictures and some radio occultation data. Final heliocentric orbit 1.02 x 1.63 AU, 2.2 degree inclination, 556 day period.
Mars probe intended to enter Martian orbit and comprehensively photograph Mars. Parameters are for Mars orbit. Mars 5 reached Mars on 12 February 1974 and was inserted into a 1760 km x 32,586 km orbit. Due to computer chip failures the orbiter operated only a few days and returned atmospheric data and images of a small portion of the Martian southern hemisphere.
Mars probe intended to make a soft landing on Mars. Total fueled launch mass of the lander and orbital bus was 3260 kg. It reached Mars on 12 March 1974, separated from the bus, and entered the atmosphere, where a parachute opened, slowing the descent. As the probe descended through the atmosphere it transmitted data for 150 seconds, representing the first data returned from the atmosphere of Mars. Unfortunately, the data were largely unreadable due to a flaw in a computer chip which led to degradation of the system during its journey to Mars. When the retro-rockets fired for landing, contact was lost with the craft. Mars 6 landed at about 24 degrees south, 25 degrees west in the Margaritifer Sinus region of Mars. Bus ended up in a final heliocentric orbit 1.01 x 1.67 AU, 2.2 degree inclination, 567 day period.
Mars probe intended to make a soft landing on Mars. Mars 7 reached Mars on 9 March 1974. Due to a problem in the operation of one of the onboard systems (attitude control or retro-rockets) the landing probe separated prematurely and missed the planet by 1,300 km. The early separation was probably due to a computer chip error which resulted in degradation of the systems during the trip to Mars. Ended up in a final heliocentric orbit 1.01 x 1.69 AU, 2.2 degree inclination, 574 day period.
Combined Venus orbiter/lander mission. After separation of the lander, the orbiter spacecraft entered Venus orbit and acted as a communications relay for the lander and explored cloud layers and atmospheric parameters. On October 20, 1975, the Descent Craft was separated from the Orbiter, and landing was made with the sun near zenith at 05:13 GMT on October 22. The Descent Craft included a system of circulating fluid to distribute the heat load. This system, plus precooling prior to entry, permitted operation of the spacecraft for 53 min after landing. The landing was about 2,200 km from the Venera 10 landing site. Preliminary results indicated: (A) clouds 30-40 km thick with bases at 30-35 km altitude, (B) atmospheric constituents including HCl, HF, Br, and I, (C) surface pressure about 90 (earth) atmospheres, (D) surface temperature 485 deg C, (E) light levels comparable to those at earth midlatitudes on a cloudy summer day, and (F) successful TV photography showing shadows, no apparent dust in the air, and a variety of 30-40 cm rocks which were not eroded. Venera 9 and 10 were the first probes to send back black and white pictures from the Venusian surface. They were supposed to make 360 degree panoramic shots, but on both landers one of two camera covers failed to come off, restricting their field of view to 180 degrees. Parameters are for Venus orbit.
The orbiter spacecraft entered Venus orbit and was separated from the lander on October 23, 1975. The lander touched down with the sun near zenith, at 05:17 GMT, on October 25. A system of circulating fluid was used to distribute the heat load. This system, plus precooling prior to entry, permitted operation of the spacecraft for 65 min after landing. During descent, heat dissipation and deceleration were accomplished sequentially by protective hemispheric shells, three parachutes, a disk-shaped drag brake, and a compressible, metal, doughnut-shaped, landing cushion. The landing was about 2,200 km distant from Venera 9. Preliminary results provided: (A) profile of altitude (km)/pressure (earth atmospheres) / temperature (deg C) of 42/3.3/158, 15/37/363, and 0/92/465, (B) successful TV photography showing large pancake rocks with lava or other weathered rocks in between, and (C) surface wind speed of 3.5 m/s. Venera 9 and 10 were the first probes to send back black and white pictures from the Venusian surface. They were supposed to make 360 degree panoramic shots, but on both landers one of two camera covers failed to come off, restricting their field of view to 180 degrees.
Venera 11 was part of a two-spacecraft mission to study Venus and the interplanetary medium. Each of the two spacecraft, Venera 11 and Venera 12, consisted of a flight platform and a lander probe. Identical instruments were carried on both spacecraft. Venera 11 was launched into a 177 x 205 km, 51.5 degree inclination earth orbit from which it was propelled into a 3.5 month Venus transfer orbit. After ejection of the lander probe, the flight platform continued on past Venus in a heliocentric orbit. Near encounter with Venus occurred on December 25, 1978, at approximately 34,000 km altitude. The flight platform acted as a data relay for the descent craft for 95 minutes until it flew out of range and returned its own measurements on interplanetary space. The Venera 11 descent craft separated from its flight platform on December 23, 1978 and entered the Venus atmosphere two days later at 11.2 km/sec. During the descent, it employed aerodynamic braking followed by parachute braking and ending with atmospheric braking. It made a soft landing on the surface at 06:24 Moscow time on 25 December after a descent time of approximately 1 hour. The touchdown speed was 7-8 m/s.
Both Venera 11 and 12 landers failed to return colour television views of the surface and perform soil analysis experiments. All of the camera protective covers failed to eject after landing (the cause was not established) The soil drilling experiment was apparently damaged by a leak in the soil collection device, the interior of which was exposed to the high Venusian atmospheric pressure. The leak had probably formed during the descent phase because the lander was less aerodynamically stable than had been thought.
Two further experiments on the lander failed as well. Results reported included evidence of lightning and thunder, a high Ar36/Ar40 ratio, and the discovery of carbon monoxide at low altitudes.
Venera 12 was part of a two-spacecraft mission to study Venus and the interplanetary medium. Each of the two spacecraft, Venera 11 and Venera 12, consisted of a flight platform and a lander probe. Identical instruments were carried on both spacecraft. Venera 12 was launched into a 177 x 205 km, 51.5 degree inclination Earth orbit from which it was propelled into a 3.5 month Venus transfer orbit which involved two mid-course corrections, on 21 September and 14 December. After ejection of the lander probe on 19 December, two days before encounter, the flight platform continued on past Venus in a heliocentric orbit. Near encounter with Venus occurred on December 21, 1978, at approximately 34,000 km altitude. The flight platform acted as a data relay for the descent craft for 110 minutes until it flew out of range and returned to its own measurements on interplanetary space. The Venera 12 descent craft entered the Venus atmosphere at 11.2 km/sec two days after separation from the flight bus. During the descent, it employed aerodynamic braking followed by parachute braking and ending with atmospheric braking. It made a soft landing on the surface at 06:30 Moscow time on 21 December after a descent time of approximately 1 hour. The touchdown speed was 7-8 m/s.
Both Venera 11 and 12 landers failed to return colour television views of the surface and perform soil analysis experiments. All of the camera protective covers failed to eject after landing (the cause was not established) The soil drilling experiment was apparently damaged by a leak in the soil collection device, the interior of which was exposed to the high Venusian atmospheric pressure. The leak had probably formed during the descent phase because the lander was less aerodynamically stable than had been thought. Therefore the landing gear of the following two landers (Venera-13/14) were equipped with tooth-shaped stabilisers.
Results reported included evidence of lightning and thunder, a high Ar36/Ar40 ratio, and the discovery of carbon monoxide at low altitudes.
The Venera-12 flyby bus continued in solar orbit and successfully used its Soviet-French ultraviolet spectrometer to study Comet Bradfield on 13 February 1980 (one year and two months after its Venus encounter). At that time the spacecraft was 190,373,790 km from Earth.
Venera 13 and 14 were identical spacecraft built to take advantage of the 1981 Venus launch opportunity and launched 5 days apart. After launch and a four month cruise to Venus, the descent vehicle separated and plunged into the Venus atmosphere on 1 March 1982. As it flew by Venus the bus acted as a data relay for the brief life of the descent vehicle, and then continued on into a heliocentric orbit. After the descent vehicle braked to subsonic speed a parachute was deployed. At an altitude of 47 km the parachute was released and simple airbraking was used the rest of the way to the surface. Venera 13 landed about 950 km northeast of Venera 14 at 7 deg 30 min S, 303 E, just east of the eastern extension of an elevated region known as Phoebe Regio. The area was composed of bedrock outcrops surrounded by dark, fine-grained soil. After landing an imaging panorama was started and a mechanical drilling arm reached to the surface and obtained a sample, which was deposited in a hermetically sealed chamber, maintained at 30 degrees C and a pressure of about .05 atmospheres. The composition of the sample, as determined by the X-ray flourescence spectrometer, put it in the class of weakly differentiated melanocratic alkaline gabbroids. The lander survived for 127 minutes (the planned design life was 32 minutes) in an environment with a temperature of 457 degrees C and a pressure of 84 Earth atmospheres. The bus carried instruments built by Austrian and French specialists, as well as Soviet scientific equipment.
Venera 13 and 14 were identical spacecraft built to take advantage of the 1981 Venus launch opportunity and launched 5 days apart. After launch and a four month cruise to Venus, the descent vehicle separated and plunged into the Venus atmosphere on 5 March 1982. As it flew by Venus the bus acted as a data relay for the brief life of the descent vehicle, and then continued on into a heliocentric orbit. The parachute of the descent vehicle opened after the lander reached subsonic speed. At an altitude of about 50 km the parachute was released and simple airbraking was used the rest of the way to the surface. Venera 14 landed about 950 km southwest of Venera 13 near the eastern flank of Phoebe Regio at 13 deg 15 min S by 310 E on a basaltic plain. After landing an imaging panorama was started It has been reported that the surface analysis arm accidentally landed on one of the ejected camera covers and therefore didn't send back any data on the Venusian soil. This is visible in photographs sent back. On the other hand, the official account very specifically states that the mechanical drilling arm obtained a sample, which was deposited in a hermetically sealed chamber, maintained at 30 degrees C and a pressure of about .05 atmospheres. The composition of the sample was determined by the X-ray flourescence spectrometer, showing it to be similar to oceanic tholeiitic basalts. The lander survived for 57 minutes (the planned design life was 32 minutes) in an environment with a temperature of 465 degrees C and a pressure of 94 Earth atmospheres.
Venera 15 was part of a two spacecraft mission (along with Venera 16) designed to use side-looking radar mappers to study the surface properties of Venus. The two spacecraft were inserted into Venus orbit a day apart with their orbital planes shifted by an angle of approximately 4 degrees relative to one another. This made it possible to reimage an area if necessary. Each spacecraft was in a nearly polar orbit with a periapsis at 62 N latitude. Together, the two spacecraft imaged the area from the north pole down to about 30 degrees N latitude over the 8 months of mapping operations. Data is for Venus orbit.
Venus radar mapper; entered Venus orbit 10/14/83. Venera 16 was part of a two spacecraft mission (along with Venera 15) designed to use side-looking radar mappers to study the surface properties of Venus. The two spacecraft were inserted into Venus orbit a day apart with their orbital planes shifted by an angle of approximately 4 degrees relative to one another. This made it possible to reimage an area if necessary. Each spacecraft was in a nearly polar orbit with a periapsis at 62 N latitude. Together, the two spacecraft imaged the area from the north pole down to about 30 degrees N latitude over the 8 months of mapping operations.