The Large Launch Vehicle Planning Group (Golovin Committee) notified the Marshal! Space Flight Center (MSFC), Langley Research Center, and the Jet Propulsion Laboratory (JPL) that the Group was planning to undertake a comparative evaluation of three types of rendezvous operations and direct flight for manned lunar landing. Rendezvous methods were earth orbit, lunar orbit, and lunar surface. MSFC was requested to study earth orbit rendezvous, Langley to study lunar orbit rendezvous, and JPL to study lunar surface rendezvous. The NASA Office of Launch Vehicle Programs would provide similar information on direct ascent. Additional Details: here....
The NAA spacecraft Statement of Work was revised to include the requirements for the lunar excursion module (LEM) as well as other modifications. The LEM requirements were identical with those given in the LEM Development Statement of Work of July 24.
The command module (CM) would now be required to provide the crew with a one-day habitable environment and a survival environment for one week after touching down on land or water. In case of a landing at sea, the CM should be able to recover from any attitude and float upright with egress hatches free of water. Additional Details: here....
Apollo Spacecraft Project Office requested NAA to perform a study of command module-lunar excursion module (CM-LEM) docking and crew transfer operations and recommend a preferred mode, establish docking design criteria, and define the CM-LEM interface. Both translunar and lunar orbital docking maneuvers were to be considered. The docking concept finally selected would satisfy the requirements of minimum weight, design and functional simplicity, maximum docking reliability, minimum docking time, and maximum visibility.
The mission constraints to be used for this study were :
The Amour Research Foundation reported to NASA that the surface of the moon might not be covered with layers of dust. The first Armour studies showed that dust particles become harder and denser in a higher vacuum environment such as that of the moon, but the studies had not proved that particles eventually become bonded together in a rocket substance as the vacuum increases.
MSC released a sketch of the space suit assembly to be worn on the lunar surface. It included a portable life support system which would supply oxygen and pressurization and would control temperature, humidity, and air contaminants. The suit would protect the astronaut against solar radiation and extreme temperatures. The helmet faceplate would shield him against solar glare and would be defrosted for good visibility at very low temperatures. An emergency oxygen supply was also part of the assembly.
Four days earlier, MSC had added specifications for an extravehicular suit communications and telemetry (EVSCT) system to the space suit contract with Hamilton Standard Division of United Aircraft Corporation. The EVSCT system included equipment for three major operations:
Grumman and NASA announced the selection of four companies as major LEM subcontractors:
The first meeting of the LEM Flight Technology Systems Panel was held at MSC. The panel was formed to coordinate discussions on all problems involving weight control, engineering simulation, and environment. The meeting was devoted to a review of the status of LEM engineering programs.
Grumman studied the possibility of using the portable life support system lithium hydroxide cartridges in the LEM environmental control system, and determined that such common usage was feasible. This analysis would be verified by tests at Hamilton Standard.
Grumman authorized Hamilton Standard to begin development of the environmental control system (ECS) for the LEM. The cost-plus-incentive-fee contract was valued at $8,371,465. The parts of the ECS to be supplied by Hamilton Standard were specified by Grumman.
MSC directed Grumman to schedule manned environmental control system (ECS) development tests, using a welded-shell cabin boilerplate and air lock. At about the same time, the company was also requested to quote cost and delivery schedule for a second boilerplate vessel, complete with prototype ECS. Although this vessel would be used by the MSC Crew Systems Division for in-house investigation and evaluation of ECS development problems, its major purpose was to serve as a tool for trouble-shooting during the operational phase.
MSC's Space Environment Division (SED) recommended (subject to reconnaissance verification) 10 lunar landing areas for the Apollo program:
Bendix Products Aerospace Division was awarded a 99973 contract by MSC to study crushable aluminum honeycomb, a lightweight, almost non-elastic, shock-absorbing material for LEM landing gears. Bendix would test the honeycomb structures in a simulated lunar environment.
Representatives of Grumman, MSC's Instrumentation and Electronics Systems Division, ASPO, and Resident Apollo Spacecraft Program Office (RASPO) at Bethpage met at Grumman to plan the LEM's electrical power system. The current configuration was composed of three fuel cell generators with a maximum power output of 900 watts each, spiking stabilizing batteries, one primary general-purpose AC inverter, and a conventional bus arrangement. To establish general design criteria, the primary lunar mission of the LEM-10 vehicle was analyzed. This "critical" mission appeared to be the "worst case" for the electrical power system and established maximum power and usage rate requirements.
Those attending the meeting foresaw a number of problems:
At an Apollo Program Review held at MSC, Maxime A. Faget reported that Crew Systems Division had learned that the metabolic rate of a man walking in an unpressurized suit was twice that of a man in everyday clothes. When the suit was pressurized to 1.8 newtons per square centimeter (3.5 psi), the rate was about four times as much. To counteract this, a watercooled undergarment developed by the British Ministry of Aviation's Royal Aircraft Establishment was being tested at Hamilton Standard. These "space-age long johns" had a network of small tubes through which water circulated and absorbed body heat. Advantages of the system were improved heat transfer, low circulating noise levels, and relatively moderate flow rates required. An MSC study on integration of the suit with the LEM environmental control system showed a possible weight savings of 9 kilograms (20 pounds).
Grumman completed an environmental control system water management configuration study and concluded that a revised design would significantly improve the probability of mission success and crew safety. This design would combine water tanks for the water management functions into one easily accessible package.
Grumman redesigned the LEM environmental control system to incorporate a replaceable lithium hydroxide cartridge with a portable life support system cartridge in parallel for emergency backup. The LEM cartridge would be replaced once during a two-day mission.
Also MSC advised Grumman that estimates of the metabolic rates for astronauts on the lunar surface had been increased. The major effect of this change was an increase in the requirements for oxygen and water for the portable life support system.
Representatives from a number of elements within MSC (including systems and structural engineers, advanced systems and rendezvous experts, and two astronauts, Edward H. White II and Elliot M. See, Jr.) discussed the idea of deleting the LEM's front docking capability (an idea spawned by the recent TM-1 mockup review). Rather than nose-to-nose docking, the LEM crew might be able to perform the rendezvous and docking maneuver, docking at the spacecraft's upper (transfer) hatch, by using a window above the LEM commander's head to enable him to see his target. Additional Details: here....
Representatives from the MSC Astronaut Office, and ASPO's Systems Engineering, Crew Systems, and Mission Planning divisions made several significant decisions on crew transfer and space suit procedures:
Because of the redesign of the portable life support system that would be required, MSC directed Grumman and North American to drop the "buddy system" concept for the spacecraft environmental control system (ECS) umbilicals. The two LEM crewmen would transfer from the CM while attached to that module's umbilicals. Hookup with the LEM umbilicals, and ventilation from the LEM ECS, would be achieved before disconnecting the first set of lifelines. MSC requested North American to cooperate with Grumman and Hamilton Standard on the design of the fetal end of the umbilicals. Also, the two spacecraft contractors were directed jointly to determine umbilical lengths and LEM ECS control locations required for such transfer.
Grumman reported to MSC the results of development tests on the welding of the LEM cabin's thin-gauge aluminum alloy. The stress and corrosion resistance of the metal, Grumman found, was not lessened by environments of pure oxygen, varying temperatures, and high humidity.
MSC spelled out additional details of the LEM environmental control system (ECS) umbilical arrangements. The hoses were to be permanently bonded to the ECS; a crossover valve, to permit flow reversal, was mandatory; and a bypass relief would be added, if necessary, to prevent fan surge. Grumman was to coordinate with North American to ensure that all umbilicals were long enough for crew transfer and to determine the optimum location for the spacecraft's ECS switches.
Crew Systems Division (CSD) was proceeding with procurement of an inflight metabolic simulator in response to a request by Systems Engineering Division. The simulator would be used to support the LEM mission for SA-206 and would be compatible for use in the CM. Responsibility for the project had been assigned to the Manager of the LEM Environmental Control System Office. It was projected that the Statement of Work would be completed by January 15, 1965; the proposals evaluated by April 1; the contract awarded by June 1, 1965; the prototype delivered by April 1, 1966, with two qualified simulator deliveries by July 1, 1966.
To make room for a rendezvous study, MSC was forced to end, prematurely, its simulations of employing the LEM as a backup for the service propulsion system. Nonetheless, the LEM was evaluated in both manual and automatic operation. Although some sizable attitude changes were required, investigators found no serious problems with either steering accuracy or dynamic stability.
MSC's Systems Engineering Division (SED) requested support from the Structures and Mechanics Division in determining the existence or extent of corrosion in the coolant loops of the SM electrical power subsystem (EPS) and the CM and LEM environmental control subsystems (ECS), resulting from the use of water glycol as coolant fluid. Informal contact had been made with W. R. Downs of the Structures and Mechanics Division and he had been given copies of contractor reports and correspondence between MSC, North American, and MIT pertaining to the problem. The contractors had conflicting positions regarding the extent and seriousness of glycol corrosion.
SED requested that a study be initiated to:
MSC announced a realignment of specialty areas for the 13 astronauts not assigned to forthcoming Gemini missions (GT 3 through 5) or to strictly administrative positions:
Charles A. Bassett - operations handbooks, training, and simulators
Alan L. Bean - recovery systems
Michael Collins - pressure suits and extravehicular activity
David R. Scott - mission planning and guidance and navigation
Clifton C. Williams - range operations, deep space instrumentation, and crew safety.
Donn F. Eisele - CSM and LEM
William A. Anders - environmental control system and radiation and thermal systems
Eugene A. Cernan - boosters, spacecraft propulsion, and the Agena stage
Roger B. Chaffee - communications, flight controls, and docking
R. Walter Cunningham - electrical and sequential systems and non-flight experiments
Russell L. Schweickart - in-flight experiments and future programs.
MSC contacted Grumman with reference to the LEM ascent engine environmental tests at Arnold Engineering Development Center (AEDC), scheduled for cell occupancy there from May 1, 1965, until September 1, 1965. It was MSC's understanding that the tests might begin without a baffled injector. It was pointed out, however, that the first test was expected to begin July 1, and since the recent baffle injector design selection had been made, time remained for the fabrication of the injector, checkout of the unit, and shipment to AEDC for use in the first test.
Since the baffled injector represented the final hardware configuration, it was highly desirable to use the design for these tests. MSC requested that availability of the injector constrain the tests and that Grumman take necessary action to ensure compliance.
The LEM Project Officer notified Grumman that the President's Scientific Advisory Committee (PSAC) had established sub-panels to work on specific technical areas, beyond the full PSAC briefings. One of the sub-panels was concerned with the environmental control subsystem, including space suits. This group desired representation from Hamilton Standard to discuss with regard to the LEM-ECS its interpretation of the reliability design requirements, its implementation through development and test phases, its demonstration of reliability, and its frank assessment of confidence in these measures. Briefing material should be available to the sub-panel by May 17, 1965, with a primary discussion meeting to be held at Hamilton Standard on May 24.
Systems Engineering Division did not concur in use of the chamber technician's suit by test subjects in AFRM 008 tests. AFRM 008 represented the only integrated spacecraft test under a simulated thermal- vacuum environment and was therefore considered a significant step in man-rating the overall system. For that reason use of the flight configuration Block I suit was a firm requirement for the AFRM 008 tests.
The same rationale would be applicable to the LEM and Block II vehicle chamber tests. Only flight configured spacecraft hardware and extravehicular mobility unit garments would be used by test subjects.
ASPO reviewed Grumman's recommendation for a combination of supercritical and gaseous modes for storing oxygen in the LEM's environmental control system (ECS). MSC engineers determined that such an approach would save only about 14.96 kg (33 lbs) over a high- pressure, all-gaseous design. Mission objectives demanded only four repressurizations of the LEM's cabin. On the basis of this criterion, the weight differential was placed at less than nine pounds.
As a result of this analysis, MSC directed Grumman to design the LEM ECS with an all-gaseous oxygen storage system.
MSC informed Grumman it believed it would be beneficial to the LEM development program for MSC to participate in the manned environmental control system tests to be conducted in Grumman's Internal Environment Simulator. The following individuals were suggested to participate: Astronaut William A. Anders or an alternate to act as a test crewman for one or more manned runs; D. Owen Goons or an alternate to act as a medical monitor for the aforementioned astronaut; and John W. O'Neill or an alternate to monitor voice communications during the test and record astronaut comments.
Donald K. Slayton, Assistant Director for Flight Crew Operations, described a potential hazard involved in crew procedures inside the LEM. Two sets of umbilicals linked the Block II space suit to the environmental control system (ECS) and to the portable life support system (PLSS). Though slight, the possibility existed that when a hose was disconnected, the valve inside the suit might not seat. In that event, gas would escape from the suit. Should this occur while the LEM was depressurized, the astronaut's life would be in jeopardy. Consequently, Slayton cautioned, it would be unwise to disconnect umbilicals while in a vacuum. This in turn imposed several mission constraints:
Crew Systems Division reported that, as currently designed, the environmental control system (ECS) in the LEM would not afford adequate thermal control for an all-battery spacecraft. Grumman was investigating several methods for improving the ECS's thermal capability, and was to recommend a modified configuration for the coolant loop.
MSC ordered Grumman to propose a gaseous oxygen storage configuration for the LEM's environmental control system (ECS), including all oxygen requirements and system weights. Because no decision was yet made on simultaneous surface excursions by the crew, Grumman should design the LEM's ECS for either one-or two-man operations. And the Center further defined requirements for cabin repressurizations and replenishment of the portable life support systems. Oxygen quantities and pressures would be worked out on the basis of these ground rules.
In a series of meetings at Downey, Calif., MSC, Grumman, and North American worked out most of the interface between the two spacecraft. Among the most significant items yet unresolved were: the thermal environment of the LEM during boost; and the structural loads and bending modes between the docked spacecraft.
Structures and Mechanics Division (SMD) reported that Grumman had found two thermal problems with the LEM:
Joseph F. Shea, ASPO Manager, established as a firm mission requirement the capability to connect the space suit to the LEM's environmental system and to the portable life support system while in a vacuum. This capability was essential for operational flexibility on the moon's surface.
Crew Systems Division (CSD) conducted a series of flight tests to determine whether the cabin layout of the LEM was suitable for crew performance in zero and one-sixth g environments. Together with its report of satisfactory results, the division made several observations that it thought "appropriate":
Grumman completed its study of oxygen storage systems for the LEM and reviewed with MSC the company's recommendation (one 20,684-kilonewton per sq m (3,000 psi) tank in the descent stage, two 6,894-kilonewtons per sq m (1,000 psi) tanks in the ascent stage). One drawback to the design, which the Crew Systems Division termed an "apparently unavoidable bad feature," was that, by the time of the final cabin repressurization, the repressurization time would increase to about 12 minutes (though this was admittedly a conservative estimate). Although requesting more data from Grumman on temperatures and cabin pressures, the Center approved the configuration.
Crew Systems Division (CSD) completed its study on the feasibility of controlling the amount of bacteria vented from the LEM. Division researchers found that, by placing special filters in the environmental control system (ECS) of the spacecraft, emission levels could be greatly lowered. This reduction would be meaningless, however, in view of effluents from the extravehicular mobility unit (EMU) - the moon would still be contaminated by the space travelers. Because of weight penalties - and because of their dubious value - CSD recommended that bacteria filters not be added to the LEM's ECS. The Division further advised that, at present, neither the amount of bacteria emitted from the EMU nor a means of controlling this effluence was yet known.
Crew Systems Division (CSD) reported that changing the method for storing oxygen in the LEM (from cryogenic to gaseous) had complicated the interface between the spacecraft's environmental control system (ECS) and the portable life support system (PLSS). Very early, the maximum temperature for oxygen at the PLSS recharge station had been placed at 80 degrees. Recent analyses by Grumman disclosed that, in fact, the gas temperature might be double that figure. Oxygen supplied at 160 degrees, CSD said, would limit to 2½ hours the PLSS operating period. Modifying the PLSS, however, would revive the issue of its storage aboard both spacecraft.
Seeking some answer to this problem, CSD engineers began in-house studies of temperature changes in the spacecraft's oxygen. There was some optimism that Grumman's estimates would be proved much too high, and MSC thus far had made no changes either to the ECS or to the PLSS.
Grumman received approval from Houston for an all-gaseous oxygen supply system in the LEM. While not suggesting any design changes, MSC desired that portable life support systems (PLSS) be recharged with the cabin pressurized. And because the oxygen pressure in the descent stage tanks might be insufficient for the final recharge, the PLSSs could be "topped off" with oxygen from one of the tanks in the vehicle's ascent stage if necessary.
MSC requested that Grumman review the current LEM landing and docking dynamic environments to assure: (1) no loss of the abort guidance system attitude reference due to angular motion exceeding its design limit of 25 degrees per second during indicated mission phases; and (2) a mission angular acceleration environment, exceeding the gyro structural tolerances, would not be realized.
To solve the problem of controlling bacteria in the LEM's waste management system (WMS), Crew Systems Division (CSD) recommended some type of passive control rather than periodically adding a germicide to the system. CSD described two such passive techniques, both of which relied on chemicals upstream from the WMS (i.e., in the urine collection device in the space suit). MSC began studying the feasibility of this approach, and ordered Grumman also to evaluate passive control in the contractor's own investigation of the bacteriological problem.
MSC instructed North American to:
MSC was considering the use of both water and air bacteria filters in the LEM to reduce contamination of the lunar surface. Crew Systems Division (CSD) would attempt to determine by tests what percentage concentration of micro-organisms would be trapped by the filters. CSD hoped to begin limited testing in January 1966.
At an MSC meeting attended by ASPO, CSD, and Lunar Sample Receiving Laboratory representatives, it was decided that the following directions would be sent to Grumman:
The following responsibilities were transferred from MIT to AC Electronics:
A potential problem still existed with the boost environment for the LEM and the associated spacecraft-LEM-adapter (SLA) thermal coating. Systems Engineering Division authorized North American to proceed with implementation of an SLA thermal coating to meet the currently understood SLA requirements. Grumman would review the North American study in detail for possible adverse impact on the LEM and would negotiate with MSC.
John D. Hodge, Chief of MSC's Flight Control Division, proposed that time-critical aborts in the event of a service propulsion system failure after translunar injection (TLI; i.e., insertion on a trajectory toward the moon) be investigated. Time-critical abort was defined as an abort occurring within 12 hours after TLI and requiring reentry in less than two days after the abort.
He suggested that if an SPS failed the service module be jettisoned for a time-critical abort and both LEM propulsion systems be used for earth return, reducing the total time to return by approximately 60 hours. As an example, if the time of abort was 10 hours after translunar injection, he said, this method would require about 36 hours; if the SM were retained the return time would require about 96 hours.
He added that the LEM/CM-only configuration should be studied for any constraints that would preclude initiating this kind of time-critical abort. Some of the factors to be considered should be:
The Grumman-directed Apollo Mission Planning Task Force reported on studies of abort sequences for translunar coast situations and the LEM capability to support an abort if the SM had to be jettisoned. The LEM could be powered down in drifting flight except for five one-hour periods, and a three-man crew could be supported for 57 hours 30 minutes. It was assumed that all crewmen would be unsuited in the LEM or tunnel area and that the LEM cabin air, circulated by cabin fans, would provide adequate environment.
A series of actions on the LM rendezvous sensor was summarized in a memo to the MSC Apollo Procurement Branch. A competition between LM rendezvous radar and the optical tracker had been initiated in January 1966 after discussion by ASPO Manager Joseph F. Shea, NASA Associate Administrator for Manned Space Flight George E. Mueller, and MSC Guidance and Control Division Chief Robert C. Duncan. On May 13, RCA and Hughes Aircraft Go. made presentations on the rendezvous radar optical tracker. The NASA board that heard the presentations met for two days to evaluate the two programs and presented the following conclusions:
Donald K. Slayton said there was some question about including extravehicular activity on the AS-503 mission, but he felt that, to make a maximum contribution to the lunar mission, one period of EVA should be included. Slayton pointed out that during the coast period (simulating lunar orbit) in the current flight plan the EVA opportunity appeared best between hour 90 and hour 100. Additional Details: here....
An MSC meeting selected a Flight Operations Directorate position on basic factors of the first lunar landing mission phase and initiated a plan by which the Directorate would inform other organizations of the factors and the operational capabilities of combining them into alternate lunar surface mission plans.
Flight Operations Director Christopher C. Kraft, Jr., conducted the discussion, with Rodney G. Rose, Carl Kovitz, Morris V. Jenkins, William E. Platt, James E. Hannigan, Bruce H. Walton, and William L. Davidson participating.
The major factors (philosophy) identified at the meeting were:
Possible hazards to the crew in the lunar module thermal vacuum test program (using LTA-8) were pointed up in a memorandum to Manager, ASPO, and Director of Engineering and Development from the Director of Flight Crew Operations. Manning procedures required crewmen to make numerous hard vacuum transfers between the Space Environment Simulation Laboratory's environmental control system (ECS) umbilicals and the LM environmental control system hoses. Also, during the manning operations the crewmen would be on the LM-ECS with the cabin depressurized. In the configuration in use, if one of the crewmen lost his suit integrity, there would be no protection for the other man. Because of these hazardous conditions the following actions were requested:
MSC's Engineering and Development (E&D) Directorate recommended that the Apollo CM be provided with a foam fire extinguisher. E&D also recommended that the LM be provided with a water nozzle for extinguishing open fires and that cabin decompression be used to combat fires behind panels. An aqueous gel (foam) composition fire extinguisher was considered most appropriate for use in the CM because hydrogen in the available water supply could intensify the fire, water spray could not reach fires behind panels, and a shirt-sleeve environment was preferred. E&D further recommended that development of a condensation nuclei indicator be pursued as a flight fire detection system, but that it not be made a constraint on the Apollo program. ASPO Manager George M. Low concurred with the recommendations September 28 and MSC Director Robert R. Gilruth concurred October 7.
On October 26, the Director of Flight Crew Operations stated that his Directorate was formulating and implementing a training program for flight crews to give them experience in coping with fire in and around the spacecraft. "In total, the crew training for cockpit fires will consist of: Review of BP 1224 and M-6 'burn test' film; demonstration briefings on the fire extinguishers and their most effective use; procedural practice simulating cockpit fire situations in conjunction with one 'g' spacecraft/mockup/Apollo Mission Simulator walkthroughs and in the egress trainer placed in the altitude chamber; and as a part of the overall launch pad emergency and evacuation procedures training at the fire service training area at KSC."
Because of many questions asked about spacecraft weight changes in the spacecraft redefinition, ASPO Manager George M. Low prepared a memo for the record, indicating weights as follows:
Lunar Module Significant Weight Changes Lunar module injected weight status March 1, 1967 (ascent and descent less propellant) - 4039.6 kg
Lunar module injected weight status September 22, 1967 - 4270.0 kg
Command Module Significant Weight Changes Command module injected weight status March 1, 1967 - 5246.7 kg
Command module injected weight status September 22, 1967 - 5679.8 kg
An MSC meeting discussed environmental acceptance testing of Apollo spacecraft at the vehicle level. The meeting was attended by representatives of OMSF, MSC, and General Electric. Lad Warzecha presented results of a GE analysis of ground- and flight-test failures in a number of spacecraft programs. GE had concluded that a significant number of failures could be eliminated through complete vehicle environmental (vibration and thermal vacuum) acceptance testing and recommended such testing be included in the CSM and LM programs. James A. Chamberlin, MSC, presented a critique of the GE recommendations and found fault with the statistical approach to the GE analysis, indicating that each flight failure would have to be considered individually to reach valid conclusions. After considerable discussion ASPO Manager George M. Low said that he had reached the following conclusions:
A LM prelaunch atmosphere selection and repressurization meeting was held at MSC, attended by representatives of MSC, MSFC, KSC, North American Rockwell, and Grumman. The rationale for MSC selection of 100 percent oxygen as the LM cabin launch atmosphere was based on three factors: use of other than 100 percent oxygen in the LM cabin would entail additional crew procedural workloads at transposition and docking; excessive risk to crew due to depletion of the CM emergency oxygen consumables would be added; and it would require use of 2.7 kilograms of onboard CM oxygen. Two problems were identified with use of 100 percent oxygen in the LM cabin at launch: LM cabin flammability on the pad and LM venting oxygen into the SLA during boost. If air were used in the LM cabin at launch and the LM vent valve opened during boost, the full CM stored-oxygen capacity would be required to pressurize the LM and LM tunnel for umbilical mating. For a lunar mission, this situation would be similar to that before lunar orbital insertion, but would subject the crew to a condition of no stored oxygen for an emergency. For an earth-orbital mission this situation would be objectionable because CM stored oxygen would be lacking for an emergency entry into the atmosphere.
ASPO Manager George M. Low advised top officials in Headquarters, MSFC, and KSC that he was recommending the use of 100 percent oxygen in the cabin of the LM at launch. MSC had reached this decision, Low said, after thorough evaluation of system capabilities, requirements, safety, and crew procedures. The selection of pure oxygen was based on several important factors: reduced demand on the CSM's oxygen supply by some 2.7 kilograms; simplified crew procedures; the capability for immediate return to earth during earth-orbital missions in which docking was performed; and safe physiological characteristics. All of these factors, the ASPO Chief stated, outweighed the flammability question. Because the LM was unmanned on the pad, there was little electrical power in the vehicle at launch and therefore few ignition sources. Further, the adapter was filled with inert nitrogen and the danger of a hazardous condition was therefore minimal. Also, temperature and pressure sensors inside the LM could be used for fire detection, and fire could be fought while the mobile service structure was in place. As a result, Low stated, use of oxygen in the LM on the pad posed no more of a hazard than did hypergolics and liquid hydrogen and oxygen.
ASPO Manager George M. Low requested Joseph N. Kotanchik to establish a task team to pull together all participants in the dynamic analysis of the Saturn V and boost environment. He suggested that Donald C. Wade should lead the effort and that he should work with George Jeffs of North American Rockwell, Tom Kelly of Grumman and Wayne Klopfenstein of Boeing, and that Lee James of MSFC could be contacted for any desired support or coordination. The team would define the allowable oscillations at the interface of the spacecraft-LM adapter with the instrument unit for the existing Block II configuration, possible changes in the hardware to detune the CSM and the LM, and the combined effects of pogo and the S-IC single-engine-out case. Low also said he was establishing a task team under Richard Colonna to define a test program related to the same problem area and felt that Wade and Colonna would want to work together.
In response to a letter from Apollo Program Director Samuel C. Phillips concerning proposed revisions of the first lunar landing mission plan, MSC Director Robert R. Gilruth presented MSC's position on the three major topics: